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DNA microarrays represent an important new method for determin-
ing the complete expression profile of a cell. In ‘‘spotted’’ microarrays,
slides carrying spots of target DNA are hybridized to fluorescently
labeled cDNA from experimental and control cells and the arrays are
imaged at two or more wavelengths. In this paper, we perform
statistical analysis on images of microarrays and show that quanti-
tating the amount of fluorescent DNA bound to microarrays is subject
to considerable uncertainty because of large and small-scale intensity
fluctuations within spots, nonadditive background, and fabrication
artifacts. Pixel-by-pixel analysis of individual spots can be used to
estimate these sources of error and establish the precision and
accuracy with which gene expression ratios are determined. Simple
weighting schemes based on these estimates are effective in improv-
ing significantly the quality of microarray data as it accumulates in a
multiexperiment database. We propose that error estimates from
image-based metrics should be one component in an explicitly prob-
abilistic scheme for the analysis of DNA microarray data.

Large-scale expression profiling has emerged as a leading tech-
nology in the systematic analysis of cellular physiology (1).

Expression profiling involves the hybridization of fluorescently
labeled cDNA, prepared from cellular mRNA, to microarrays
carrying up to 105 unique sequences. Several types of microarrays
have been developed (2), but microarrays printed by pin transfer are
among the most popular (3). Typically, a set of target DNA samples
representing different genes is prepared by PCR and transferred to
a coated slide to form a 2-D array of spots with a center-to-center
distance (pitch) of about 200 mm. In the budding yeast Saccharo-
myces cerevisiae, for example, an array carrying about 6,200 genes
provides a pan-genomic profile in an area of 3 cm2 or less (4, 5).
cDNA samples from experimental and control cells are labeled with
different color fluors and hybridized simultaneously to microarrays,
and the relative levels of mRNA for each gene are then determined
by comparing red and green signal intensities. An elegant feature
of this procedure is its ability to measure mRNA levels for many
genes at once with relatively simple technology.

Computation is required to extract meaningful information from
the large amounts of data generated by expression profiling (6, 7).
The development of bioinformatics tools and their application to
the analysis of cellular pathways are topics of great interest. Several
databases of transcriptional profiles are accessible on-line and
proposals are pending for the development of large public repos-
itories (8). However, relatively little attention has been paid to the
computation required to obtain accurate intensity information
from microarrays (but see refs. 9 and 10). The issue is important,
however, because microarray signals are weak and biologically
interesting results are usually obtained through the analysis of
outliers. In this paper, we show that pixel-by-pixel information
present in microarray images can be used in the formulation of
metrics that assess the accuracy with which an array has been
sampled. Because measurement errors can be high in microarrays,
a statistical analysis of errors combined with well established
filtering algorithms is effective in improving significantly the reli-
ability of databases containing information from multiple expres-
sion experiments.

Methods
Scanning Technology. Microarray slides were imaged with a mod-
ified fluorescence microscope designed for scanning large areas
at high resolution (arrayWoRx, Applied Precision, Issaquah,
WA). Fluorescence illumination was obtained from a metal
halide arc lamp focused onto a fiber optic bundle, the output of
which was directed at the microarray slide and emission recorded
through a microscope objective (Nikon) onto a cooled CCD
(charge-coupled device) camera (Apogee Instruments, Tucson,
AZ). Interference filters (Chroma Technology, Brattleboro,
VT) were used to select the excitation and emission wavelengths
corresponding to the Cy3 and Cy5 fluorescent probes (Amer-
sham Pharmacia). Each image covered a 2.4 3 2.4 mm area of
the slide at 5-mm resolution. To scan the entire microarray, a
series of images (‘‘panels’’) were acquired by moving the slide
under the microscope objective in 2.4-mm increments.

Determining Spot Positions. A mask containing a map of the
microarray geometry was manually aligned to the image and then
refined by determining the center-of-mass for each spot. The
fluorescence intensity in a circular region 80% the diameter of
a typical spot was integrated to determine mean fluorescence.

Process Control Flags. Of a total of 14 process control flags in the
arrayWoRx software, the following were used in this study: spot not
at expected location, redygreen negative signal after background
subtraction, ratio mismatch, correlation error, and infinite ratioy
divide by zero (further details available on request).

Reliability Measures for Individual Spots. The probability that the
distribution of Zi covers the population distribution was deter-
mined, and one minus this value used as the probability of differ-
ence. To eliminate excessive sensitivity to outliers, the upper and
lower population half-distributions were truncated at 2s and the
mean and standard deviations recalculated. In addition, only 90%
of the ratio distribution of Zi (61.65s) was used to determine
overlap. Although a more rigorous method is desired, this overlap
technique gives a basic measure of the similarity between two
distributions without being excessively sensitive to outliers.

Results
As a representative source of expression data, we analyzed
microarrays containing 6,200 spotted cDNAs from known and
potential S. cerevisiae ORFs. We are interested in artifacts
present in images of DNA microarrays that appear to be intrinsic
to expression profiling methods and therefore chose, from a
large collection of S. cerevisiae array data obtained at the Fred
Hutchinson Cancer Microarray Center (courtesy of J. Delrow),
images that had the highest overall quality (the ‘‘model array’’)
and, from the Department of Chemistry at Harvard University
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(courtesy of J. Tong and J. Hardwick), more typically noisy
images. The precise nature of the experiments is not important
for our analysis, and the arrays consisted of comparisons be-
tween two different strains of wild type S. cerevisiae or of a wild
type and a strain deleted for a single gene selected blind.
Following methods established by Brown and colleagues (3, 4),
mRNA from strain A was copied to cDNA and labeled with Cy3
(‘‘green’’), mRNA from strain B was labeled with Cy5 (‘‘red’’),
and the cDNAs were hybridized to a spotted DNA microarray.
Images of hybridized microarrays were acquired with a modified
fluorescence microscope that scans a slide-size area at several
wavelengths by stitching together images acquired with a CCD
camera (this instrument has been commercialized as the Applied
Precision arrayWoRx Scanner). Typically, the fluorescence sig-
nal from a 100-mm-diameter spot was captured on about 200
camera pixels, yielding a large number of independent measure-
ments of red and green intensities (Fig. 1a). Real microarrays
deviate from ideal grids with round spots and we therefore
recorded information about various imperfections in each spot
as a series of binary flags (‘‘process control f lags’’) that denote
poor spot position, channel misregistration, low signal-to-noise
ratio, etc. (see Methods for details).

To assess the differential expression for each gene, we need to
determine accurately the amount of real and background fluo-
rescence at each spot on the array. The mean intensity for the ith
spot (ri

m in the red and gi
m in the green) consists of the fluorescent

cDNA signal hybridized to the spot (ri and gi), background
arising from nonspecific binding by probe DNA (ri

b and gi
b), and

intensity variation arising from pattern noise, electronic noise,
and photon counting error (ri

e and gi
e):

r#i
m 5 r#i 1 r#i

b 6 ri
e [1]

g# i
m 5 g#i 1 g#i

b 6 gi
e [2]

where r#i
m 5

1
ji
O

k 5 1

ji

rik
m, etc. [3]

where j is the number of pixels in each spot included in the
measurement. The extent of induction or repression of the ith
gene, the expression ratio Zi, is then

Zi 5 c
r#i
m 2 r#i

b 6 ri
e

g#i
m 2 g#i

b 6 gi
e [4]

The distributions about ri
m and gi

m (on a pixel-by-pixel basis) are
approximately normal, as judged by using the method of Bow-
man and Shenton [P values for normality were typically greater
than 0.9 (11)]; as were the distributions for Zi so that

sZi

2 < cFsgi

2
r#i
m2

g#i
m4 1

sri

2

g#i
m2 2 2srgi
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m
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where sri
and sgi

are the standard deviations about ri
m and gi

m, srgi

is the red–green covariance, and c is a constant that corrects for
differences in the gains of the red and green channels.

Determining ri and gi is nontrivial because 5–10% of the spots in
a typical array are close to background in intensity. Following
published methods (9), we determined ri

b and gi
b by measuring local

background at the four corners of a rectangular region of interest
surrounding the ith spot (Fig. 1a). With our model array we found
that the expression ratio for all genes was near to one (after
normalization), but 98 genes had negative intensities (Fig. 1a and
data not shown). When background subtraction was applied to our
set of typical arrays, 50–500 spots per array had negative intensities.
Similar problems appear to plague published studies. Negative

expression is nonsensical and suggestive of a flaw in using local
background to estimate nonspecific hybridization.

Why is local background such a poor measure of nonspecific
fluorescence for microarray spots? When absolute intensities were
compared on a pixel-by-pixel basis for a spot that looked like a
‘‘black hole,’’ a region surrounding the black hole (the local
background), a weakly fluorescent spot, and a point on the slide
outside the hybridization area, significant overlaps were observed in
the intensity distributions (Fig. 1b). The center of the black hole was
clearly less intense than the local background and the weakly
fluorescent spot was only slightly brighter. The problem of negative
intensities does not arise because the spot is being incorrectly
located during image segmentation, but rather because more
fluorescent probe is actually binding to the area surrounding the

Fig. 1. Comparing local and best-fit methods for determining array back-
ground. (a) Gene expression graph of Cy5 vs. Cy3 intensity for 6,200 yeast genes
with local background used to offset signal intensities. Not shown are 98 spots
with negative intensities. (Inset) Local background was determined by averaging
red and green intensities over 16 pixels, at each of the four corners (marked B) of
a rectangular region surrounding each spot. (b) Distribution of Cy5 intensities for
a region of the slide away from the hybridization area (dotted blue line), a spot
with negative intensity (a ‘‘black hole,’’ red line), local background surrounding
the black hole (solid blue line), and a nearby low-intensity spot (green line). Each
distribution is derived from over 150 sampled pixels. (c) Gene expression graph as
in b, but with best-fit background. Only one (obviously scratched) spot has
negative intensity and is not shown.

Brown et al. PNAS u July 31, 2001 u vol. 98 u no. 16 u 8945

EN
G

IN
EE

RI
N

G



spot than to the spot itself. We suspect that nonspecific and specific
hybridization signals are nonadditive as a consequence of differ-
ences in the chemistry of nonspecific binding of probe to nonho-
mologous spotted DNA and to DNA-free substrate (in our exper-
iments, polylysine-treated glass).

We therefore explored ways to calculate the background by
taking advantage of the ratiometric design of expression profil-
ing experiments. Successful calculation is expected to yield
background values for each channel greater than zero and less
than the intensity of the weakest spot. Three precisely deter-
mined hybridization standards would in principal allow Eq. 4 to
be solved for the entire data set. In cases where the majority of
genes are unaffected by experimental conditions it is also valid
to solve Eq. 4 from the expression data itself. In this case, the
average expression ratio for the whole array is approximately
one, A# 5 1yn (i51

n Zi < 1 (where n is the number of spots in
the array). Some advantages of this approach are that hybrid-
ization standards are not required and the contribution of noise
is reduced by averaging across thousands of spots. However, the
entire array is assumed to have constant background, which may
not be correct. Moreover, if the overall levels of transcription
change (as might be expected in a miniarray in which
only selected genes are being analyzed), then the assumption that
A# 5 1 is not valid and it is necessary to use control spots.

Because the microarrays analyzed in this study did not contain
hybridization standards, a best-fit method was used to determine c
and background levels from the experimental spots themselves. We
observed that the best-fit values for background for the model array
(ri

b, gi
b 5 55, 39) were close to the background measured away

from the hybridized area of the slide (i.e., outside the coverslip; r i
b,

gi
b 5 53, 30) and typically lower than the local background (r i

b, gi
b '

67, 60; a bias value of 50 counts has been subtracted from all values).
In addition, when ratios were calculated by using a best-fit back-
ground (Fig. 1c), essentially all negative expression values were
eliminated and a significant number of transcripts were induced or
repressed (Table 1; at 99.99% confidence, see below). We conclude
that a computational approach finds optimized values for back-
ground from the spot intensities themselves, that these values are
typically lower than those obtained by using local background, and
that the computed background eliminates the problem of negative
intensities. We believe, but have not yet proven, that this compu-
tation could be made more reliable through the use of multiple,
nonhomologous hybridization controls.

A Statistical Metric for Microarray Data Quality–Spot Ratio Variability.
Careful inspection of typical DNA microarrays reveals that in
addition to black holes, a significant fraction (5–20%) of all spots
have nonuniform red–green ratios (Fig. 2a). Data obtained by
others and posted to the web are also characterized by uneven spot
morphology. In some spots, the red and green probes almost
completely separate from each other or form bright clumps,
presumably during hybridization. To explore systematically these
intensity variations across a 6,200-spot array we plotted the stan-
dard deviation of the pixel-by-pixel intensities for each spot (aver-
aged across both channels) against the spot’s average signal inten-
sity (Fig. 2b). The standard deviations in the pixel-by-pixel intensity
distributions were high in absolute magnitude and the trend-line
rose linearly as the signal intensity increased (red line). In contrast,
measurement noise, including photon counting noise, rises only as

Fig. 2. Analysis of spot morphologies. (a) A gallery of spots from cDNA based
microarrays and their corresponding red–green ratio is graphed three-
dimensionally. Clockwise from the top left: a high quality spot, a spot exhib-
iting dye separation, a scratched spot, and a clumped spot. (b) Relationship
between signal intensity ([ri

m 1 gi
m) and standard deviation in the pixel-by-

pixel intensities ([sri 1 sgi]y2) for all 6,200 spots in the model array. The red
dotted line shows the trend-line; the green-dotted line shows expected
instrument noise based on photon counting statistics.

Table 1. Statistical analysis of changes in gene expression ratios

Significant changes in gene expression*†

Background
method

Change in
expression

Average
change

Number of spots differentially expressed

Total 1 , Zi , 2 0.5 , Zi , 1

Local Induced 4.3 4 0

Repressed 0.29 3 0

Best-fit Induced 3.2 14 2

Repressed 0.36 18 7

Insignificant changes in gene expression†

Background Zi . 2 Zi , 0.5

determination

Local 20‡ 90

Best-fit 8 3

*Data from the model array in Figure 1.
†Determined at 99.99% confidence by assessing overlap between the spot ratio distribution and the population
distribution, as described in the text.

‡Excludes 57 divide by 0 spots found using local background subtraction and one (scratched spot) with best-fit
methods.
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the square root of the signal (green line). The unexpectedly high
fluctuation in signal intensities across spots is not imposed by our
analytic methods, nor does it arise from limitations in the instru-
mentation. Instead, it is a feature of the granularity of microarray
spots, generated, we assume, during array fabrication and process-
ing. For all but the dimmest spots, the inherent granularity of spots
is the primary contributor to variations in red and green fluores-
cence and not photon counting uncertainty.

Although all spots are characterized by intensity fluctuations
(granularity), even well fabricated ones, some spots are much more
irregular than others. As a simple measure of the irregularity of a
spot, we propose the normalized standard deviation of the ratio
measurement, the spot ratio variability (SRV):

SRVi 5
sZi

Zi
[6]

Intuitively, it seems likely that gene expression ratios calculated
from spots with highly irregular morphologies would be less reliable
than those obtained from uniform spots. Highly irregular spots are
difficult to segment away from the surrounding background of the
slide and extreme irregularity presumably reflects some underlying
problem with array fabrication or hybridization. This finding is
illustrated by two spots chosen to have Zi ' 2, but an SRV of 0.15
(spot A) or 0.45 (Spot B; Fig. 3a). Whereas spot A is very uniform
in color, spot B contains an irregular clump of probe (Fig. 3b). An

examination of spots across the model array confirms that artifacts
in spot morphology readily apparent on inspection of microarray
images give rise to high SRV values and often produce poorly
determined expression ratios.

Using SRV to Assign Significance Estimates of Expression Ratios. One
application of SRV values is to identify genes whose expression
ratios Zi are significantly different from the norm when the
reliability of the measurement is taken into account. The basic
notion is that when SRV is small, we can be confident in the
significance of a relatively small difference between Zi and A# , but
when SRV is large, the difference between Zi and A# must be
greater. To ascertain whether Zi differs significantly from A# , we
determined the extent of overlap between the ratio distribution of
the ith spot and the population distribution for all Zi (representing
roughly 6,200 ratios in the entire array; Fig. 3b). As described above,
the ratio distribution for the ith spot can be approximated by Zi, sZi

,
but the population distribution is inherently skewed because Zi
cannot go below zero, its most probable value is ca. one, and it can
be arbitrarily large. We therefore split the population distribution
into a lower half-distribution below the peak value and an upper
half above the peak, and approximated both half-distributions as
either normal or log-normal (log-normal for the model array). To
make probability estimates robust to outliers, the distributions were
truncated to eliminate the tails (see Methods). A confidence limit
of 99.99% was chosen to threshold the probability of overlap
because with 6,200 measurements it is expected to yield only one
false positive (obviously it can be lowered if less rigorous discrim-
ination is desired). By using these simple methods, 14 genes in the
model array were found to be significantly induced an average of
2.3-fold (60.4) and 18 genes were repressed an average of 2.0-fold
(60.4) (Table 1). It is expected that the future application of more
sophisticated robust statistics will be even better at identifying ratios
that differ significantly from the population as a whole.

Measuring Scan Quality. In many cases we observed that red–green
intensity varied several-fold across a spot, but that the SRV value
was quite low, indicating that the two signals were rising and falling
together. To examine this quantitatively, pixel-by-pixel intensities of
spots A and B were plotted relative to each other (Fig. 4a). In both
the relatively uniform spot A (low SRV) and the less uniform spot
B (high SRV), a high degree of covariance was observed relative to
variance, resulting in ellipsoidal distributions. When covariance was
plotted relative to the product of the variance in the red and green
channels (Fig. 4b, blue dots) for all 6,200 spots, the data fell on a
straight line, consistent with the idea that red and green signals
exhibit highly correlated intensity fluctuations (Fig. 4b). As ex-
pected, spots that lie below the variance–covariance trend-line are
those in which the normal granularity is perturbed and appear
irregular (Fig. 4c). Obtaining data in which intensity fluctuations
are correlated is not trivial however; image misalignment between
red and green channels on the scale of 1–2 pixels is very common
with many instruments and this drastically diminishes the average
correlation, increases SRV, and reduces information content. We
believe that the average correlation coefficient r is a good indicator
of overall scan quality, and illustrate the effect of a scan problem by
introducing a single pixel shift computationally into an arrayWoRx
image (Fig. 4b, green dots).

r# 5
1
n O

i 5 1

n

cov~r, g!iysrisgi [7]

When SRV values for an entire array are compared with a recently
published error model that parameterizes sources of error in
microarray analysis (Fig. 4c; ref. 12), we note that the model tracks
the general trend for SRV, and correctly predicts increasing error
at low signal intensities, but does not capture the behavior of the

Fig. 3. Comparisonof twospotswithsimilar inductionratiosbutdifferentSRVs.
(a) Gene expression graph as in Fig. 1d based on best-fit-background, with spots
differing from the average induction ratio by more than 99.99% probability (as
determined by SRV values) denoted by red squares for induction and green dots
for repression. Two spots have been chosen for further analysis; Spot A with Z 5
1.7 and Spot B with Z 5 1.94. (b) Pixel by pixel Cy5yCy3 ratios for Spot A (green)
and Spot B (orange) and normal approximations to these values compared with
the population distribution of all Zi for the entire model array. The population
distribution is approximated by two log-normal half-distributions (gray and blue
lines), one used for Zi above the mean and the other for Zi those below the mean.
Based on the extent of overlap between individual spot ratio distributions and
the population distribution, Spot A has a P 5 0.87 and Spot B has P 5 0.01.
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large number of spots that lie away from the trend-line. Thus, it is
likely to be less effective in predicting the precision with which
individual Zi are determined than spot-by-spot analysis.

Using SRV to Improve Data Quality. Because of their high cost, gene
array experiments samples are rarely assayed with enough
repetitions to support an effective statistical analysis of the data.
We therefore asked whether quality metrics such as SRV derived
from a single microarray experiment might provide useful
estimates of reliability in lieu of information from truly inde-
pendent measurements of the same sample. Ten repeat mRNA
profiles from a comparison of wild-type yeast and a deletion
strain were chosen blind. The lowest quality array, as judged
visually, was discarded. For each of the 6,200 spots in the
remaining nine arrays, the average of the expression ratio for the
ith spot across nine microarrays Zi, the standard deviation in this
value sZi

, and the spot ratio variability for the nine arrays SRVi
were determined. Encouragingly, SRVi, an image metric derived
from the pixel-by-pixel analysis of images of single spots, showed

reasonable correlation with sZi
, a conventional measure of

variability derived from repeating the experiment (Fig. 5a). The
relationship did not hold, however, if local background subtrac-
tion was used to determine fluorescent intensities, emphasizing
the importance of correct image processing (Fig. 5b).

Next, we attempted to use SRV information to improve the
quality of a database containing information from all nine
microarray experiments. Data quality was compared for a da-
tabase in which the nine determinations of expression ratio for
each gene in the array were simply averaged, and a database in
which each measurement of expression ratio was weighted by
1ySRV before averaging. Using a simple measure of data quality
for all spots in the database

Q 2 1 5
1
n O

i 5 1

n s# Zi

Z# i
[8]

where n is the number of spots in each array, we observed that data
quality increased 14% when data were weighted by 1ySRV before
being averaged. When 1ySRV weighting was supplemented by
process control flags to eliminate spots that were significantly
shifted from their ideal positions, that had zero intensity in the
green channel, or were characterized by other obvious flaws (see
Methods), Q improved 38% relative to an unfiltered database. This
increase in overall quality raised from 3 to 14 the number of genes
that differed significantly in expression ratio from the norm at
99.99% confidence. At the same time, process control flags sug-
gested that three genes that were initially considered significant
should be excluded. We conclude from these findings, that image
metrics (SRV) and process control flags derived from the analysis
of individual arrays can be used to improve significantly the quality
of a database containing microarray data. This is possible because
SRV values are a fairly good predictor of actual experimental
variability.

Discussion
In this paper we explore methods for extracting and manipulating
data from images of cDNA-based microarrays. Despite widespread

Fig. 4. Intensity variance and covariance for microarray spots. (a) Plot of Cy3 vs.
Cy5 signal on a pixel by pixel basis for the Spot A and Spot B of Fig. 3. Arrows
denote the direction of covariance, in which intensities in the red and green rise
and fall together, and of ratio variance (SRV), in which the channels rise and fall
independently. (b) Relationship of covariance and intensity variance for 6,200
spots (blue dots and red trend-line). (Insets) Images of spots lying well away from
the trend-line (indicated by red circles). To illustrate the effect of a misalignment
of one or more pixels, a common problem with laser scanners, a single pixel shift
was introduced into the original scan data (green dots, pink trend-line). The
average correlation coefficient r decreased from 0.85 to 0.41 (1.00 is the maxi-
mum possible) and the average SRV increased almost 3-fold. (c) Comparison of
SRV values (blue dots) to a recently published parameterized error model (red
line; ref. 12).

Fig. 5. Relationship between SRV and true experiment-to-experiment variabil-
ity. (a) Nine microarrays were probed with the same cDNA preparation in parallel
and data collected from 9 3 6,200 spots. The standard deviation in expression
ratios for each spot as measured on nine arrays using a best-fit background and
plotted relative to the average SRV for the same spot. The trend-line is indicated.
(b) As in a, but with local background subtraction. (c) Generation of unbiased
minimum-variance estimates for Zi by applying SRV and process control flags to
inversely weight ratio data as it enters an operational database (see text for
details).
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interest in microarray technology and expression profiling, the
analysis of measurement uncertainties has attracted relatively little
attention (9, 13). The issue is important however, because it is the
small fraction of genes whose expression differs most from the
average that are often of interest in an expression profile. To
evaluate these outliers it is necessary to determine whether they
reflect biological reality or simply error. We must therefore use
probabilities that account for error and noise as measures of gene
expression rather than single values. Because error and noise in
expression profiling have multiple origins (including sampling error,
biological fluctuation, etc.; see ref. 13), a different probability
distribution must be considered for each expression ratio. In this
paper, we focus on probability distributions derived from statistical
analysis of microarray images and make the simple assumption that
a gene must differ in expression ratio (Zi) from the mean ratio (A# )
by more than the measurement error for the difference to be
statistically significant. Because fabrication and signal processing
errors appear to be among the most quantitatively significant errors
in expression profiling experiments, our focus on these sources of
error is reasonable. However, it has recently been shown that
different genes in yeast have different degrees of biological vari-
ability in their expression levels (for as-yet unknown reasons; ref.
12) and that this must be taken into account while formulating
conditional probabilities associated with each gene’s expression
(Fig. 5c).

Image analysis of DNA microarrays suggests that two issues are
of greatest importance in obtaining good data: determining the
background and reducing the impact of poor quality spots on the
data set. We find that the widely used method of subtracting local
background from spot intensity (9) is not accurate and causes about
1–5% of spots in a typical array to have nonsensical negative
intensities. As an alternative, we propose a best-fit method of
determining background that uses the ratiometric nature of gene
arrays to compute a background. This method has the advantage of
producing a self-consistent and noise-free estimate of background.
In the work presented here, we have assumed that transcription
across all genes is unaltered (A# ' 1); but in future experiments we
intend to include a series of hybridization and negative control spots
and to use them in the best-fit determination of background (ri

b and
gi

b) and ratio normalization (c).
To determine what distinguishes good data from bad, we have

explored the impact of intensity fluctuations across a spot. A
statistical analysis of spot intensities is possible with typical images
of microarrays because many (ca. 100–200) independent intensity
measurements are available for each spot. We find that spots in
hybridized microarrays are characterized by intensity fluctuations
among pixels substantially higher than would be expected on the
basis of sampling statistics and instrument limitations. In most
spots, this fluctuation is highly correlated between red and green
channels and appears to arise from an intrinsic granularity gener-
ated during array fabrication and hybridization. In some spots
however, red and green signals fluctuate independently of each
other (Fig. 2a), causing the apparent gene expression ratio to vary
from one place in the spot to the next. As a simple measure of ratio
inhomogeneity that succinctly summarizes the reliability of the
expression ratio for a spot, we calculate the normalized standard
deviation of the ratio distribution, a value we refer to as spot ratio

variability (SRV). Pixel-by-pixel ratio distributions across spots are
nearly normal so that the mean and normalized variance for the
red–green ratio—Zi and SRV—constitute reasonable and easily
manipulated estimates for the distribution of Zi. However, we have
observed that not all anomalies in DNA arrays are captured by the
SRV value. A series of flags that denote other obvious problems
such as severe mispositioning (and thus, likely overlap with a
neighboring spot), extremely low signal levels, and abnormally high
local background are also important.

Applications of Image Metrics in Microarray Analysis. We envision
three uses for image-derived quality metrics in the analysis of
spotted DNA microarrays. The first is to provide information for
statistical quality control during array fabrication and processing.
By monitoring average SRV and the average correlation coefficient
(Fig. 4b) we can determine which methods give the best quality
data. The second is to determine whether the expression ratio of a
gene is significantly different from that of the population as a whole
when measurement error is taken into account. To estimate the
probability of difference, we have used a simple method of com-
paring the overlap between the ratio distribution for a single spot
and the overall distribution of Zi for all spots and argued that it is
more rigorous than the current standard of using a 2-fold change as
a threshold for significance (10). However, more sophisticated
methods will undoubtedly yield better results.

The third application of image metrics is to weight data when
populating a database with results from multiple experiments (Fig.
5c). As we have seen, the precision with which a microarray is
measured varies from spot to spot. As data from multiple microar-
rays are combined, we must ensure that good data are not con-
taminated by bad. The approach we illustrate with nine transcrip-
tional profiles is to record nine Zi values for each gene and to then
calculate a weighted average in which each measurement is in-
versely scaled according to its precision (i.e., 1ySRV with additional
information from process control flags). This is known to produce
an unbiased minimum-variance estimate for the data and in our
case results in a significant improvement in overall database quality.
In a fully developed scheme, biological error models would also be
incorporated (Fig. 5c; refs. 12 and 13).

In conclusion, we describe simple methods for using information
in images of microarrays to calculate the precision of individual
measurements of gene expression levels. As hoped, measurement
precision appears to be a good indicator of overall data quality,
presumably because a major source of error in microarray exper-
iments lies not in setting up hybridization reactions, but in the
fabrication and quantitation of spots. Future extensions of the basic
statistical models in this paper include a fully developed Bayesian
analytic scheme based on image analysis to assign conditional
probabilities to each ratiometric measurement.
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